

Biochimica et Biophysica Acta 1281 (1996) 125-128

Short sequence-paper

Human $G_{\alpha q}$: cDNA and tissue distribution ¹

Baowei Chen ^{a,2}, Robert D. Leverette ^{a,3}, Debra A. Schwinn ^{a,b}, Madan M. Kwatra ^{a,*}

Department of Anesthesiology and Pharmacology, Duke University Medical Center, Box 3094, Durham, NC 27710, USA
 Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA

Received 15 December 1995; revised 8 February 1996; accepted 14 February 1996

Abstract

 $G_{\alpha q}$, a member of the G_q family of heterotrimeric G proteins, transduces signals from several G protein-coupled receptors that stimulate membrane phosphoinositide hydrolysis. In order to further define the role of $G_{\alpha q}$ in the function of G protein-coupled receptors, we have cloned the cDNA encoding human $G_{\alpha q}$ from a prostate cDNA library. Human $G_{\alpha q}$ exhibits high homology with its mouse homolog – 94% similarity at the nucleotide level, and 99% similarity at the amino acid level. Northern hybridization data indicate high expression of $G_{\alpha q}$ mRNA in organs of the human reproductive system including ovary, prostate, and testis.

Keywords: $G_{\alpha q}$ protein; Gene expression; Nucleotide sequence; cDNA; Tissue distribution; (Human)

The heterotrimeric guanine nucleotide binding proteins called G proteins consist of α , β , and γ -subunits and transduce signals from agonist-activated receptors to a variety of effectors such as adenylyl cyclase, phospholipase C- β (PLC- β), and ion channels. Several genes encoding G protein α -subunits have been isolated. These G protein α -subunits have been classified based on sequence homology into four subfamilies: G_s , G_i , G_q , and G_{12} . These subfamilies include at least 20 distinct α -subunits; in addition to the existence of multiple genes for $G\alpha$ -subunits, genes for five distinct β -subunits and eight different γ -subunits have also been isolated [1–3].

The focus of our laboratory is to understand molecular interactions between G protein-coupled receptors (such as substance P and α_1 -adrenergic) and G proteins of the G_q subfamily. The G_q subfamily includes α_q , α_{11} , α_{14} , and α_{16} . These $G\alpha$ -subunits are insensitive to pertussis-toxin, and have been shown to activate PLC- β isozymes that catalyze the hydrolysis of membrane phosphoinositides

Human prostate mRNA (Clontech, Palo Alto, CA) was converted into cDNA using reverse transcriptase following the manufacturer's protocol (Superscript, Gibco, Gaithersburg, MD). A 150 bp human $G_{\alpha q}$ probe was synthesized by PCR (GeneAmp[®] Kit, Perkin Elmer, Norwalk, CT) using the prostate cDNA as a template and degenerate oligonucleotide primers derived from the published sequence of mouse $G_{\alpha q}$ [12]. For PCR reaction, the following conditions were used: denature for 30 s at 95°C, anneal for 30 s at 47°C, and extension for 30 s at 72°C. The 150

⁽PI) into inositol trisphosphate and diacylglycerol [4,5]. Thus, G proteins of the G_q family mediate signal transduction through G protein-coupled receptors linked to PI-hydrolysis. Some of the receptors that have already been shown to interact with the G_q family are α_1 -adrenergic [6], endothelin [7], m₁-muscarinic acetylcholine [8], thyrotropin-releasing hormone [9], and thromboxane A₂ receptors [10]. In a recent study, we showed that a mixture of $G_{\alpha\alpha}$ and $G_{\alpha 11}$, purified from bovine liver, converts partially purified and reconstituted substance P receptor (SPR) into a high affinity state for the agonist substance P [11]. In order to further characterize functional interactions between SPR and individually purified recombinant $G_{\alpha\alpha}$ and $G_{\alpha + 1}$, we cloned the cDNA of human $G_{\alpha \, q}$ from a prostate cDNA library. Our results indicate that human $G_{\alpha q}$ is highly homologous to mouse $G_{\alpha q}$, and we find relatively high expression of $G_{\alpha q}$ mRNA in organs of the human reproductive system including ovary, prostate, and testis.

^{*} Corresponding author. Fax: +1 (919) 6814776; e-mail: kwatr001@mc.duke.edu.

¹ The sequence data reported in this paper have been submitted to the GenBank under the accession number 1/43083

GenBank under the accession number U43083.

² Present address: VA Medical Center, Room 20, Building 16, 508 Fulton Street, Durham, NC 27705, USA.

³ Present address: Research Biologist, Lorillard Tobacco Company, 420 English Street, Greensboro, NC 27420, USA.

bp PCR product was labeled with digoxigenin (DIG) (Boehringer Mannheim, Indianapolis, IN) utilizing Klenow enzyme, and used as a probe to screen a human prostate $\lambda gt10$ cDNA library according to the manufacturer's protocol (Clontech, Palo Alto, CA). Eight positive clones were identified, with one clone containing a full length cDNA of $G_{\alpha q}$; DNA sequencing was performed using the fmole DNA sequencing system (Promega Corporation, Madison, WI).

Fig. 1 shows the nucleotide and deduced amino acid sequences of human $G_{\alpha q}$. A comparison of these sequences with the published sequences of mouse $G_{\alpha q}$ [12] reveals high sequence similarity. At the nucleotide level, human $G_{\alpha q}$ and mouse $G_{\alpha q}$ are 94% identical (1016 bp out of 1077 bp); at the amino acid level, the deduced amino acid sequence of human $G_{\alpha q}$ and mouse $G_{\alpha q}$ are 99% identical (355 identical amino acids out of 359). Human $G_{\alpha 11}$ has been cloned [13] and shares 89% identity at the

amino acid level (321 identical amino acids out of 359) with human $G_{\alpha q}$ (see Fig. 2).

To determine tissue distribution of $G_{\alpha q}$, a Northern blot containing 2 μg each of poly(A)⁺ RNA from different human tissues was purchased from Clontech (Palo Alto, CA). An 800 bp PCR-generated fragment from the coding sequence of human $G_{\alpha q}$ was labeled with DIG and used as a probe for Northern analysis. The blot was prehybridized in ExpressHyb Solution (Clontech, Palo Alto, CA) at 68°C for 30 min, then hybridized with the DIG-labeled probe in the same solution at 68°C for 1 h. The membrane was washed in $2 \times SSC$, 0.1% SDS at room temperature for 30 min, followed by a wash with 0.1 × SSC, 0.1% SDS at 68°C for 30 min. The washed blot was developed using chemiluminescence substrate Lumi-Phos 530 according to the manufacturer's protocol (Boehringer Mannheim, Indianapolis, IN).

Results of the Northern hybridization are shown in Fig.

														_					GCCC	-181
																			GACG	-121
																			AGGG	-61
TG	TGT	GTG	CGC	GGC	TGT	GAG	CAG	GGG	TGC	CGG	CGG	GCT	'GCA	.GCG	GAG	GCA	CTT	TGG	AAGA	-1
												CGA	.GGA	.GGC	CAA	GGA	AGC	CCG	GCGG	60
M	\mathbf{T}	L	E	S	I	M	Α	С	C	L	S	Ε	E	A	K	\mathbf{E}	Α	R	R	(20)
ΤA	CAA	CGA	CGA	GAT	CGA	.GCG	GCA	GCT	CCG	CAG	GGA	CAA	.GCG	GGA	CGC	CCG	CCG	GGA	GCTC	120
I	N	D	E	I	\mathbf{E}	R	Q	${f L}$	R	R	D	K	R	D	Α	R	R	E	L	(40)
AΑ	GCT	GCT	GCT	GCT	CGG	GAC	AGG	AGA	GAG	TGG	CAA	GAG	TAC	GTT	TAT	CAA	GCA	GAT	GAGA	180
K	L	L	L	L	G	\mathbf{T}	G	E	S	G	K	S	\mathbf{T}	F	I	K	Q	M	R	(60)
ΑT	CAT	CCA	TGG	GTC	AGG	ATA	CTC	TGA	TGA	AGA	TAA	AAG	GGG	CTT	CAC	CAA	GĈT	GGT	GTAT	240
I	I	Н	G	S	G	Y	S	D	E	D	K	R	G	F	Т	K	L	V	Y	(80)
CA	GAA	CAT	CTT	CAC	GGC	CAT	GCA	GGC	CAT	GAT	CAG	AGC	CAT	GGA	CAC	ACT	CAA	GAT	CCCA	300
Q	N	I	F	T	Α	M	0	Α	M	I	R	Α	M	D	Т	L	K	I	P	(100)
TA	CAA	GTA'	TGA	GCA	CAA	TAA	GĞC	TCA	TGC	ACA	ATT	AGT	TCG	AGA	AGT	TGA	TGT	GGA	GAAG	360
Y	K	Y	E	Н	N	K	Α	Н	Α	0	L	V	R	E	V	D	v	E	K	(120)
GT	GTC	TGC'	TTT	TGA	GAA	TCC	ΑΤΑ	TGT	AGA	~			GAG			GAA		TCC	TGGA	420
v	s	A	F	E	N	P	Y	V	D	Α	I	K	S	L	W	N	D	P	G	(140)
ΑT	_		ATG	_		-	_	-	_		_						_	_	CTAT	480
I	0	E	c	Y	D	R	R	R	E	Y	0	L	s	D	s	T	K	Y	Y	(160)
_	-		_	_	_				_										GCTT	540
L	N	D	L	D	R	V	A	D	P	A	Y	L	P	T	0	0	D	v	L	(180)
		_		_				_	-			_	-						CATT	600
R	v	R	v	P	T	T	G	I	I	E	Y	P	F	D	L	0	S	V	I	(200)
	-		-	_	_		_												CTTT	660
F	R	M	V.	D	V	G	G	Q	R	S S	E	R	R	K	W	I	H	C	F	(220)
-			-		-	-					_			_				-	GGTG	720
E	N	V	T	S	Ī	M	F	L	V.	A	L	S	E	Y	D	0	V	L	V	(240)
_		-	_	_			_	_	-			_	_			~		_	CACA	780
E	SIC.	nga: D	N	E	uaa N	R.	M	GGA E	GGA. E	AAG S	K	A A	L	F	R	AAC. T		IAI	T	(260)
_		_		_													I		AGAG	840
Y	P	W	F		GAA N	S	S	V	I	L	GIT F	L	aaa N							
_	_		_	Q			-					_		K	K	D	L	L	E	(280)
																			GAGA	900
E	K	I	M	Y	S	H	L	V	D	Y	F	P	E	Y	D	G	P	Q	R	(300)
_		_																	CAGT	960
D	A	Q	A	A	R	E	F	I	L	K	M	F	V	D	L	N	P	D	S	(320)
																			TGTC	1020
D	K	I	N	Y	S	H	F	T	C	A	T	D	T	E	N	I	R	F		(340)
				-			-			-			-			-			CTAA	1080
F	Α	A	V	K	D	\mathbf{T}	I	L	Q	L	N	L	K	E	Y	N	L	V	*	(359)
																			AGAG	1140
																			CTCT	1200
																			AGAG	1260
														_					AGGC	1320
							-												CTTG	1380
														AAC	AAA	GCT	GAT'	TTC	CCTT	1440
TT	TTT	CTT	CCC	CCG	CTA	ATT	CAT	ACC	TCC	CTC	CTG	ATG	TT							1480

Fig. 1. Nucleotide and deduced amino acid sequences of the cDNA encoding human $G_{\alpha q}$. The nucleotide number is indicated on the right and the amino acid number is in parentheses. Positive numbering starts from the putative translation initiation codon ATG. The stop codon is indicated by an asterisk.

3. Of the tested tissues, $G_{\alpha q}$ expresses highest in ovary, prostate, testis, and colon. Furthermore, each tissue exhibits two major $G_{\alpha q}$ transcripts of approximately 6 and 8 kb sizes. The significance of multiple $G_{\alpha q}$ transcripts is not clear; however, these results are in agreement with multiple (at least three major) $G_{\alpha q}$ transcripts seen in various mouse tissues [12].

Our finding of relatively high expression of $G_{\alpha q}$ mRNA in ovary, prostate, and testis is interesting. Since $G_{\alpha q}$ mediates PI-hydrolysis, a biochemical response involved in cell proliferation [14], it is conceivable that this G protein plays a role in normal/abnormal growth of these organs. In this connection, it is important to note that constitutively active mutants of $G_{\alpha q}$ have been shown to cause cell transformation [15,16], and oncogenic mutations in other G proteins have been noted in various human cancers [17–19].

In conclusion, we have isolated the cDNA encoding $G_{\alpha q}$ from a human prostate cDNA library, and demonstrate that this $G\alpha$ -subunit is relatively abundant in ovary, prostate, and testis. The availability of human $G_{\alpha q}$ cDNA

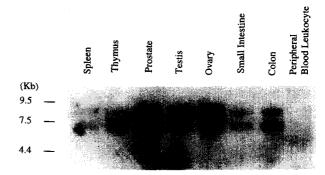


Fig. 3. Northern blot analysis of $G_{\alpha q}$ mRNA in various human tissues. The blot (purchased from Clontech) contains 2 μ g poly(A)⁺ RNA from the listed human tissues. This blot was probed with an 800 bp, DIGlabeled, PCR-generated probe from the coding sequence of human $G_{\alpha q}$ cDNA. The blot was developed using chemiluminescence substrate Lumi-Phos 530 (Boehringer Mannheim).

should now make it possible to purify this G protein in sufficient quantities for functional interactions with substance P and other receptors.

human	Gαq	MTLESIMACCLSEEAKEARRINDEIERQLRRDKRDARRELKLLLLGTGES
mouse	Gαq	HV
human	Gα11	MD-VSKAKQL
human	Gαq	GKSTFIKQMRIIHGSGYSDEDKRGFTKLVYQNIFTAMQAMIRAMDTLKIP
mouse	Gαq	
human	Gα11	EL
human	Gaq	YKYEHNKAHAQLVREVDVEKVSAFENPYVDAIKSLWNDPGIQECYDRRRE
mouse	Goog	
human		QL-ITTHQSTE
human	Gαq	YQLSDSTKYYLNDLDRVADPAYLPTQQDVLRVRVPTTGIIEYPFDLQSVI
mouse	Goog	SS
human	Gα11	AT-VI-TLGENI-
human	Gαq	FRMVDVGGQRSERRKWIHCFENVTSIMFLVALSEYDQVLVESDNENRMEE
mouse	Gαq	
human	Gα11	
human	Gaq	SKALFRTIITYPWFQNSSVILFLNKKDLLEEKIMYSHLVDYFPEYDGPQR
mouse	Gαq	
human	Gα11	F
human	Gασ	DAQAAREFILKMFVDLNPDSDKINYSHFTCATDTENIRFVFAAVKDTILQ
mouse	-	
human	-	EP
human	-	LNLKEYNLV
mouse	_	
human	Gα11	

Fig. 2. Alignment of deduced amino acid sequence of human $G_{\alpha q}$, mouse $G_{\alpha q}$ [12], and human $G_{\alpha 11}$ [13].

This research was supported in part by funds from the American Cancer Society Institutional Research Grant (ACS-IRG 158I) and from the American Lung Association (North Carolina Affiliate) grant to M.M.K. We thank Mary Carnell for secretarial assistance.

References

- [1] Neer, E.J. (1995) Cell 80, 249-257.
- [2] Hepler, J.R. and Gilman, A.G. (1992) Trends Biochem. Sci. 17, 383-387
- [3] Ray, K., Kunsch, C., Bonner, L.M. and Robishaw, J.D. (1995) J. Biol. Chem. 270, 21765-21771.
- [4] Taylor, S., Chae, H., Rhee, S. and Exton J. (1991) Nature 350, 516-518.
- [5] Wu, D., Lee, C.-H., Rhee, S.G. and Simon, M.I. (1992) J. Biol. Chem. 267, 1811–1817.
- [6] Wu, D., Katz, A., Lee, C.-H. and Simon, M.I. (1992) J. Biol. Chem. 267, 25798–25802.
- [7] Jouneaux, C., Mallat, A., Serradeil-Le Gal, C., Goldsmith, P., Hanoune, J. and Lotersztajn, S. (1994) J. Biol. Chem. 269, 1845– 1851

- [8] Berstein, G., Blank, J.L., Smrcka, A.V., Higashima, T., Sternweis, P.C., Exton, J.H. and Ross, E.M. (1992) J. Biol. Chem. 267, 8081–8088.
- [9] Aragay, A.M., Katz, A. and Simon, M.I. (1992) J. Biol. Chem. 267, 24983–24988.
- [10] Ushikubi, F., Nakamura, K.-I. and Narumiya, S. (1994) Mol. Pharm. 46, 808–816.
- [11] Kwatra, M.M., Schwinn, D.A., Schreurs, J., Blank, J.L., Krause, J., Benovic, J.L., Caron, M.G. and Lefkowitz, R.J. (1993) J. Biol. Chem. 268, 9161–9164.
- [12] Strathmann, M. and Simon, M.I. (1990) Proc. Natl. Acad. Sci. USA 87, 9113–9117.
- [13] Jiang, M., Pandey, S., Tran, V.T. and Fong, H.K.W. (1991) Proc. Natl. Acad. Sci. USA 88, 3907–3911.
- [14] Berridge, M.J. (1993) Nature 361, 315-325.
- [15] De Vivo, M., Chen, J., Codina, J. and Iyengar, R. (1992) J. Biol. Chem. 267, 18263–18266.
- [16] Kalinec, G., Nazarali, A., Hermouet, S., Xu, N. and Gutkind, S. (1992) Mol. Cell. Biol. 12, 4687–4693.
- [17] Landis, C., Masters, S., Spada, A., Pace, A., Bourne, H. and Vallar, L. (1989) Nature 340, 692-696.
- [18] Lyons, J., Landis, C., Harsh, G., Vallar, L., Grunewald, K., Feichtinger, H., Duh, Q., Clark, O., Kawasaki, E., Bourne, H. and McCormick, F. (1990) Science 249, 655-659.
- [19] Clementi, E., Malgaretti, N., Meldolesi, J. and Taramelli, R. (1990) Oncogene 5, 1059–1061.